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The theory of complex multiplication
is not only the most beautiful part of
mathematics but also of the whole of
science.

David Hilbert

1. Elliptic Curves Picture

We have hinted a number of times throughout the class about the theory of Complex
Multiplication, or CM for short. CM theory connections elliptic curves, algebraic
number theory, and modular forms. We will describe the key aspects of this theory. An
excellent exposition of this is found in Zagier’s chapter in the 1-2-3 of Modular Forms.
We will closely follow his exposition in most of this document.

We begin with the story for elliptic curves, where the term “complex multiplication”
comes from. Let E/C be an elliptic curve. Then E ∼= C/Λ for some lattice Λ, as we’ve
seen. Given another curve E ′ ∼= C/Λ′, and a λ ∈ C such that

λΛ ⊆ Λ′,

the multiplication by λ map sends E → E ′.
In the special case when Λ = Λ′, so that we require λΛ ⊆ Λ, we get an endomorphism

E → E. What λ can we perform “multiplication” with to obtain an endomorphism? It
is clear that if λ ∈ Z, then we have λΛ ∈ Λ. However, there are never any other real
values λ which work. Sometimes, there are additional complex numbers we can multiply
by, λ ∈ C \ R. In this case, we say the curve has CM. In short, this means that
the curve has an endomorphism ring strictly larger than Z. If its not Z, then it turns
out its what we call an order in an imaginary quadratic field.

Example. For α ∈ C×, consider the elliptic curve C/(α · Z[i]). Then multiplication by
i keeps you in the same lattice, and so the curve has CM. The Weierstrass equation of
this curve is

E : y2 = 4x3 − ax.
We can write down the extra endomorphism here as the map sending

x 7→ −x, y 7→ −iy,
which is an order 4 endomorhpism. This recovers the example of the congruent number
elliptic curve, which explains why we said that curve has CM.

2. CM points and singular moduli

I have briefly mentioned CM points before. How do these relate to elliptic curves?
We know that elliptic curves correspond to points in Γ(1)\H, via

Γ(1)τ ↔ [C/Λτ ], Λτ = Zτ + Z.
1



2 LARRY ROLEN, VANDERBILT UNIVERSITY, FALL 2020

If we have an elliptic curve with CM, we can consider the corresponding point in
Γ(1)\H, or a representative of it, say in the fundamental domain. The corresponding
points are the CM points. For instance, in the previous example, the point corre-
sponding to the CM elliptic curves we constructed in the last example is the CM point
τ = i.

An equivalent definition: it turns out that these are simply the algebraic integers in
imaginary quadratic fields which lie in the upper half plane (an algebraic integer is the
root of a monic integer polynomial).

Values of modular forms at these CM points are “nice.” For instance, we’ll see that

j(CM) ∈ Q,
that is, that j(τ) evaluated at a CM point is algebraic. These special values are called
singular moduli. A fun fact which Schneider proved is that if j(τ) is algebraic for an
algebraic input τ , then in fact τ must be a CM point. So at least for “nice” numbers,
there are no other values of j which are also nice in the sense of being algebraic. Thus,
they are indeed very special, or “singular.”

These singular moduli are also important numbers, which generate so-called class
fields, as we shall see below.

3. CM Modular forms

There is also a notion of a CM modular form, which we won’t need as much. However,
we’ll note that in studying the Congruent Number Problem, we pointed out that the
L-functions of the Congruent Number Curve had a special representation as a Dirichlet
series for a so-called Hecke character of Z[i], which is also the L-function of a modular
form that’s a theta series for that character. A theorem of Ribet states that a newform
has CM (whatever the precise definition is) if and only if f is a theta series for such a
character. So this can be considered as a prototypical example.

4. CM Number Fields

We have already seen that imaginary quadratic fields play a role in CM theory. These
are basic examples of CM number fields. This definition requires a bit of algebraic
number theory, so if you haven’t seen the following terms, don’t worry as we won’t need
this definition. A CM number field (note: a number field is just a finite extension of Q)
is a quadratic extension K/F where F is a totally real field and K is totally imaginary.
Totally real means that all embeddings of the field into C are contained in R, and totally
imaginary means that none of the complex embeddings are.

Example. For K = Q(
√
D) with D < 0, we have that F = Q is totally real, and K is

totally imaginary. Thus, Q(
√
D) is a CM field.

Example. The next most important example is the cyclotomic field K = Q(ζn),
where ζn is a primitive n-th root of unity such as e( 1

n
). This is a quadratic extension of
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F = Q(ζn + ζ−1
n ), which happens to be a totally real field. However, one can also show

that K is totally imaginary, so is CM (if you were in my algebra class last semester, we
discussed this example in the algebraic number theory unit). The cyclotomic field is a
quadratic extension of F since it is obtained by adjoining a square root of ζ2

n + ζ−2
n − 2 =

(ζn − ζ−1
n )2.

5. First proofs

Some of the terminology and connections to different subjects out the way, let’s dive
into proving key results in the theory.

Theorem. If τ is a CM point, then j(τ) is algebraic.

Proof. If τ is a CM point, then it satisfies a quadratic equation over Z, say of the form

Aτ 2 +Bτ + C = 0.

Then the matrix

M =

(
B C
−A 0

)
fixes τ . To check this, note that we want

Mτ =
Bτ + C

−Aτ
= τ,

which is equivalent to Bτ +C = −Aτ 2. Clearly this follows from the original quadratic
equation satisfied by τ . The determinant of M is positive, as τ ∈ H implies that
B2 − 4AC < 0, which implies that AC > 0. Thus, M acts on H in addition to fixing τ
(and, in the language of the last set of notes, M is an elliptic matrix).

Consider the two modular functions j(τ) and j(Mτ). Since the latter can be written
using the slash operator as j|0M , by our earlier work this lies in M !

0(Γ(1)∩M−1Γ(1)M).
The function j(τ) is also in this space. But the space of weight 0 modular forms there (re-
call: these are also called modular functions) cannot have two algebraically independent
elements.

To see why, suppose that Γ is a discrete subgroup of SL2(R) and that Γ\H has finite
volume V (with respect to the hyperbolic measure dµ = dudvv−2). Then a valence-
formula type argument generalizing what we did to compute dimensions of modular
form spaces in level one implies that

dimMk(Γ) ≤ kV

4π
+ 1.

(To compare with the SL2(Z) case, note that an elementary integral computation shows
that the volume of the fundamental domain in this case is π/3, so that the dimension
of Mk is bounded by k/12 + 1 in this formula.) We only really need how quickly this
dimension grows asymptotically as a function of k. Thus, any three holomorphic modular
forms on Γ are algebraically dependent, as if there were three algebraically independent
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ones, then we’d have at least the number of monomials in these three forms of total weight
k living in the space of weight k modular forms. But the number of such monomials
is � k2, i.e., worse than the linear in k bound on the dimension above. Any modular
function is a quotient of two modular forms, which then implies that any two modular
functions are algebraically dependent. (Note: This is an instance of the general fact
that there are at most n algebraically independent functions on a variety of dimension
n, and modular functions are functions on a modular curve Γ\H.)

Since there is an algebraic depdendency between j(τ) and j(Mτ), there is a non-zero
polynomial P (X, Y ) such that

P (j(Mτ), j(τ)) = 0.

By comparing Fourier expansions, we can make P have Q-rational coefficients.

Exercise 1. Show this.

We can also assume that P (X,X) 6= 0. For, if a power of X − Y divided P , then we
can simply delete it as it doesn’t affect the relation P (j(Mτ), j(τ)) = 0, since j(Mτ) is
not identically equal to j(τ) as a function.

Thus, j(τ) is a root of P (x, x), a non-zero polynomial with rational coefficients. This
implies that j(τ) is algebraic, as desired. �

Similarly, by the same proof, one can show the following.

Theorem. If f is a modular function on a finite index subgroup of SL2(Z) with algebraic
Fourier coefficients at i∞, then f(τ) ∈ Q for any CM point τ .

It is natural to ask the following.

Questions. What number field do the values f(τ) in the last theorem live in? How does
the Galois group of the field they live in over the rationals act on them?

We’ll soon see what number fields arise from such constructions. The answer to
the second question is that Galois conjugates of a singular modulus are other singular
moduli.

We can give a more precise statement of the above theorem on algebraicity of singular
moduli, which will be useful. Specifically, we can choose a single polynomial relation
between j(τ) and j(Mτ) for all CM points of a given discriminant (the discriminant of
a CM point is the minimal discriminant of an integral quadratic polynomial its a root
of).

Theorem. Let m ∈ N. Then there is a polynomial

ΨM(X, Y ) ∈ Z[X, Y ],

symmetric up to a sign in X, Y , of degree σ1(m) in both variables, such that

Ψm(j(Mτ), j(τ)) = 0

for all integral matrices M of determinant m.
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Proof. Let
Mm :=

{
M ∈ Mat2×2(Z)

∣∣ det(M) = m
}
.

As we saw when we studied Hecke operators, SL2(Z) acts on Mm, and a set of represen-
tatives for SL2(Z)\Mm is given by

M∗
m :=

{(
a b
0 d

) ∣∣ a, b, d ∈ Z, ad = m, 0 ≤ b < d

}
.

The number of representatives in this set is

#M∗
m =

∑
ad=m

d = σ1(m).

We now claim that there is a polynomial Ψm(X, Y ) for which∏
M∈M∗

m

(X − j(Mτ)) = Ψm(X, j(τ)).

The left hand side is well-defined as a product over Γ(1)\Mm, as j(Mτ) only depends on
the class of M in Γ(1)\Mm. It is invariant under Γ(1), as Mm is invariant under right
multiplication by Γ(1). Iss also clearly a polynomial of degree σ1(m) in X. Moreover, the
left hand side of the above, as a polynomial in X, has coefficients which are holomorphic
functions in τ of at worst (linear) exponential growth at i∞, as each coefficient is itself
a polynomial in the j(Mτ). Thus, each coefficient is a weakly holomorphic modular
function in M !

0, and hence by what we proved a long time ago about level 1 modular
functions, is a polynomial in j(τ). This shows that

∏
M∈M∗

m
(X − j(Mτ)) = Ψm(X, j(τ))

for some polynomial Ψm.
We’ll now show that Ψm has integer coefficients. For this, we’ll use our explicit choice

of representatives M∗
m. Firstly, write

j(τ) = q−1 + 744 + 196884q + . . . =:
∑
n≥−1

c(n)qn.

Then we have

Ψm(X, j(τ)) =
∏

M∈M∗
m

(X − j(Mτ)) =
∏
ad=m
d>0

d−1∏
b=0

(
X − j

(
aτ + b

d

))

=
∏
ad=m
d>0

∏
b (mod d)

(
X −

∑
n≥−1

c(n)ζbnd q
an
d

)
,

where ζa := e(1/a) (recall, we saw similar computations when discussing Hecke opera-

tors). The last expression inside the big parentheses is in Z[ζd][X]((q
1
d )), i.e., the terms

in the sum are in the ring of Laurent series over q
1
d with coefficients in Z[ζd]. To show

that we really have something defined over Z, we use a bit of Galois theory. Galois
theory implies that to check our elements are in Q ∩ Z[ζd] = Z, we just have to check
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its fixed by the Galois group of Q(ζd), which it turns out consists of the power maps
sending

ζd 7→ ζrd
extended to all elements of Q(ζd) in the natural way, for all choices of powers r ∈
(Z/dZ)×. Explicitly, this operation, in the product above, replaces b by br, but as b
ranges mod d, so does br range over a complete set of residues modulo d. Thus,∏

b (mod d)

(
X −

∑
n≥−1

c(n)ζbnd q
an
d

)
∈ Z[X]((q)) =⇒ Ψm(X, j(τ)) ∈ Z[X]((q)).

Now this is a polynomial in j, which has integral Fourier coefficients and leading
coefficient q−1, and so

Ψm(X, j(τ)) ∈ Z[X, j(τ)].

The symmetry (up to sign) holds since
τ ′ = Mτ

M =

(
a b

c d

)
∈Mm

⇐⇒


τ = M ′τ ′

M ′ =

(
d −b
−c a

)
∈Mm.

�

Example. Let m = 2. Then we have∏
M∈M∗

2

(X − j(τ)) =
(
X − j

(τ
2

))(
X − j

(
τ + 1

2

))
(X − j (2τ)) .

Say that this is X3 − A(τ)X2 +B(τ)X − C(τ). Then

A(τ) = j
(τ

2

)
+j

(
τ + 1

2

)
+j(2τ) =

(
q−

1
2 + 744 + . . .

)
+
(
−q−

1
2 + 744 + . . .

)
+
(
q−2 + 744 + . . .

)
= q−2 + 2232 + . . . .

This leading part of the expansion (we call the non-positive terms the principal part) is
enough to determine it as a polynomial in j(τ). Specifically, after a little linear algebra
we find that

A(τ) = j(τ)2 − 1488j(τ) + 16200 + o(1),

where o(1) means a function tending to 0 as τ → i∞. As A(τ) is holomorphic on H
and is SL2(Z)-invariant, we have precisely

A = j2 − 1488j + 16200.

Similarly, one can compute that

B = 1488j2 + 40773375j + 8748000000

and
C = −j3 + 162000j2 − 8748000000j + 157464000000000.



MODULAR FORMS LECTURE 28 7

Thus,

Ψ2(X, Y ) = −X2Y 2+X3+1488X2Y+1488XY 2+Y 3−162000X2+40773375XY−162000Y 2

+8748000000X + 8748000000Y − 157464000000000

Clearly, these polynomials grow very quickly! However, one can compute these sorts
of polynomials for other modular functions to obtain polynomials with much smaller
coefficients which will have the same applications that these polynomials do to algebraic
number theory that we’ll talk about. In applications to cryptography for example, the
smallness of coefficients of the resulting polynomials is critical in implementations.

For the algebraicity of CM-values of j(τ), as above, we can use that

Ψm(j(τ), j(τ)) = 0.

Here, the restriction to the diagonal is simpler, and in fact very nice. For instance, when
m = 2, we get

Ψ2(X,X) = −(X − 8000)(X + 3375)2(X − 1728).

Here we obtain our number 1728 that occasionally has popped up for us, here arising
due to the fact that j(i) = 1728. As you may expect by now, this nice formula isn’t a
coincidence.

Remark. In general, Ψm(X, Y ) isn’t irreducible (if you want to study an algebraic num-
ber as a root of a polynomial, its preferable to have it as a root of an irreducible one).
However, it turns out that one can write

Ψm(X, Y ) =
∏
r2|m

Φ m
r2

(X, Y ),

where Φm has the same definition as Ψm but with M replaced by the set of primitive
matrices of determinant m, and the Φm(X, Y ) are then irreducible.

If m is a square, then Ψm(X,X) = 0, as Ψm(X, y) contains the factor Ψ1(X,X) =
(X−Y ). Thus, the restriction to the diagonal is not interesting in such cases. However,
for non-square values of m, we obtain the following.

Theorem. If m is not a square, then Ψm(X,X) is (up to multiplying by ±1) a monic
polynomial of degree

σ1(m)+ :=
∑
d|m

max(d,m/d).

Proof. Using the difference of d-th powers formula∏
b (mod d)

(
X − ζbdY

)
= Xd − Y d,
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we obtain

Ψm(j(τ), j(τ)) =
∏
ad=m

∏
b (mod d)

(
j(τ)− j

(
aτ + b

d

))
=
∏
ad=m

∏
b (mod d)

(
q−1 + ζ−db q−

a
d + o(1)

)
=
∏
ad=m

(
q−d − q−a + . . .

)
∼ ±q−σ

+
1 (m).

Here, recall that the asymptotic to symbol ∼ means that the ratio of both sides tends
to 1, here taken in the limit as τ → i∞. This proves the result, as j(τ) ∼ q−1. �

This refined construction now gives us the following important result.

Corollary. Singular moduli are algebraic integers.

Proof. Being an algebraic integer means that its a root of an integer polynomial which
is also monic. We just showed that Ψm(X,X) is monic. �

Example. Let’s look at the factorization of Ψ2(X,X) in more detail. Above, we found
that

Ψ2(X,X) = −(X − 8000)(X + 3375)2(X − 1728).

Consider the three CM points

i,
1 + i

√
7

2
, i
√

2.

These are fixed by

S,

(
1 1
−1 1

)
,

(
0 −1
2 0

)
respectively, which have determinants 1, 2, and 2. The corresponding singular moduli

j(i) = 1728, j

(
1 + i

√
7

2

)
= −3375, j(i

√
2) = 8000

are the roots of Ψ2(X,X).

Example. More generally, given a discriminant D < 0 (henceforth, a discriminant is
simply an integer congruent to 0 or 1 modulo 4), we can consider the CM point

τD :=

{
1
2

√
D if D is even,

1+
√
D

2
if D is odd.

Then a few sample values are:

j(τ−4) = 1728, j(τ−11) = −32768.

But these are not always integers in Z. For example,

j(τ−15) =
−191025 + 85995

√
5

2
.
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6. Connection with quadratic forms

We considered the set of quadratic forms of a given discriminant before, for example
when studying the Shimura/Shintani correspondence. Here, we’ll set Qprim

D to be the set
of primitive (has coprime coeffiicents) integral binary quadratic forms AX2+BXY +CY 2

of discriminant B2 − 4AC = D. If D is a negative discriminant and Q ∈ Qprim
D , the

associated CM point, denoted τQ, is the unique root of Q(τ, 1) in H.

There is thus a bijection Qprim
D ↔ ZD with the set of CM points of discriminant D.

We’ve discussed that Γ(1) acts onQD (the same is true if we modify our earlier discussion
for primitive forms), and the class number h(D) is

h(D) := #Γ(1)\QD = #Γ(1)\ZD.
A set of representative of Γ(1)\QD is in fact given by the classical set of reduced
quadratic forms

Qred
D :=

{
[A,B,C] ∈ Qprim

D

∣∣ − A < B ≤ A < C or 0 ≤ B ≤ A = C
}
.

Remark. This is a finite set as

C ≥ A ≥ |B| =⇒ |D| = 4AC −B2 ≥ 3A2

and once A,B are fixed, so is C.

Thus, the class number is finite (in algebraic number theory, recall that this is some

measure of how far the set of algebraic integers in Q(
√
D) is from being a UFD; this

fact is much harder to prove in general, but is easier thanks to this classical approach
Gauss used in the imaginary quadratic field case).

Finally, we let
{zD,j}1≤j≤h(D)

be a set of representatives for Γ(1)\ZD. You can do this by picking roots of reduced
quadratic forms in H; in fact, an alternative definition of reduced which is where the
strange inequalities come from is that the associated CM point is in the fundamental
domain F. We also choose zD,1 = zD, the choice of CM point in the example above.

7. Class Polynomials

We begin this section with an important definition.

Definition. The class polynomial of a negative discriminant D is

HD(X) :=
∏

τ∈Γ(1)\ZD

(X − j(τ)) .

Theorem. For any negative discriminant D, we have

HD(X) ∈ Z[X]

and that HD(X) is irreducible.
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Corollary. The singular modulus j(τD) is algebraic of degree the class number h(D) over
Q, and its Galois conjugates are the other singular moduli j(zD,j) (the first part is just
due to the fact that HD is irreducible of degree h(D), the second is a basic consequence
of Galois theory, which if you haven’t seen, you can ignore).

Sketch of proof. Before starting, we note that the determinants m above are closely
related to the discriminant here, and the feature of the construction of Ψm above was
that it was uniform in this parameter and didn’t depend on the choice of a CM point.

If τ ∈ ZD, say that its the root of the quadratic equation

Aτ 2 +Bτ + C = 0, A > 0

and that M = ( a bc d ) has determinant m and fixes τ . Thus,

aτ + b

cτ + d
= τ =⇒ aτ+b = cτ 2+dτ =⇒ cτ 2+(d−a)τ−b = 0 =⇒ (c, d−a,−b) = u(A,B,C)

for some u ∈ Z. Thus,

−b = Cu =⇒ b = −Cu
and

c = uA,

and so

M =

(
a −Cu
Au d

)
.

We also have d− a = Bu. Denoting the trace by t := d+ a, we find that

d =
1

2
(t+Bu), a =

1

2
(t−Bu).

Thus,

M =

(
1
2
(t−Bu) −Cu
Au 1

2
(t+Bu)

)
=⇒ det(M) =

1

4
(t2 −B2u2) + ACu2 =

1

4
(t2 − u2(B2 − 4AC)) =

t2 −Du2

4
= m.

Conversely, if t, u ∈ Z satisfy t2 − Du2 = 4m, then the equations above give a matrix
M ∈Mm fixing τ (that is, all steps are reversible). Thus,{
m ∈ Z

∣∣ m is the determinant of a matrix M fixing τ
}

=

{
1

4
(t2 −Du2) where t ≡ Du (mod 2)

}
.

In turn, this is the set of norms in Q(
√
D) of elements in Z[zD] (the norm in Q(

√
D) of

an element α+ β
√
D is defined to be α2 −Dβ2). This shows that the set only depends

on D, not on the specific point τ .
We can construct the square of HD(X) out of gcd’s of the polynomials Ψm(X,X)

above. We first illustrate this in a special case.
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Example. Suppose you want to pick off CM points of discriminant −7. We saw above
that Ψ2(X,X) = −(X−8000)(X+3375)2(x−1728). We saw that these three factors were
j(τ) for τ =

√
−2, (1+

√
−7)/2, i, respectively. To separate the CM point of discriminant

−7, we can use matrices of determinant 3. One can use the above characterization to
check that i,

√
−2 are fixed by matrices of determinant 3, but that (1 +

√
−7)/2 is not.

Then Ψ3(X,X) contains X − 1728 and X − 8000 as a factor but not X + 3375. This
allows one to compute that

H−7(X)2 = (X + 3375)2.

In general, we may pick a prime m1, the norm of an element of Z[zD] (it is known
that there are infinitely many) and choose finitely many additional m’s which are norms
of elements of Z[zD] but not norms in the situations for the (finitely many) other dis-
criminants where m1 is a norm. We omit the details. This doesn’t show that HD(X) is
irreducible, but that can be shown using a more detailed study of CM elliptic curves. �

8. Class number relations

Making this last proof slightly more precise also gives the following result.

Theorem (Kronecker). We have the factorization

Ψm(X,X) = ±
∏
D<0

HD(x)
rD(m)

w(D) , (m 6= �),

where
rD(m) := #

{
t, u

∣∣ t2 −Du2 = 4m
}

and w(D) the number of units in Z[zD], explicitly characterized as

w(D) =


6 if D = −3,

4 if D = −4,

2 otherwise.

There is another formulation of this. Let h∗(D) be the number of SL2(Z)-equivalence
classes of positive definite (this means that at non-zero inputs, the output is always
positive), binary integer quadratic forms of discriminant D (not only the primitive ones)
counted with multiplicity 2 over the order of the stabilizer in SL2(Z) (overall, this mul-
tiplicity is 1/2, 1/3 if the corresponding root in H is equivalent to i, ω, respectively, and
one otherwise). Alternatively, we have

h∗(D) =
∑
r2|D

h′(D/r2),

where

h′(D) :=
h(D)

1
2
w(D)

.
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The corresponding class polynomial is

H∗D(X) =
∏
r2|D

HD(X)
2

w(D)

(there are only actually fractional powers here if |D| or 3|D| is a square).
These give a nicer formula to decompose Ψm as

Ψm(X,X) = ±
∏
t2<4m

H∗t2−4m(X), (m 6= �).

Comparing degrees gives a very famous result.

Theorem (Hurwitz-Kronecker class number relation). We have, for m non-square, that

σ+
1 (m) =

∑
D<0

h(D)

w(D)
rD(m) =

∑
t2<4m

h∗(t2 − 4m).

Besides being a pretty formula, this gives a way to recursively compute class num-
bers. It turns out that this gives formulas for h∗(−4m) in terms of h∗(D) with |D| < 4m,
but only half of the discriminants are multiples of 4. However, one can prove another
class number relation: ∑

t2<4m

(m− t2)h∗(t2 − 4m) =
∑
d|m

(d,m/d)3.

Together, these two class number relations give a recursive way to compute class num-
bers. These class number relations are also quite deep, for example related to the
Eichler-Selberg trace formulas, which give the trace of Hecke operators acting on
the vector space of cusp forms, and is a basic example of much more general deep results
like the Arthur-Selberg trace formula.

9. Crazy numbers, and explicit class field theory

At the beginning of this semester, we talked about how

eπ
√

163 = 262537412640768743.99999999999925 . . .

is almost an integer. We can finally see why. From the above, if h(D) = 1, then j(zD)
is an algebraic integer inside a degree 1 extension of Q, which is to say, j(zD) ∈ Z. The
most impressive example will come from the largest possible such D (in absolute value).
A famous result of Heegner and Stark, which solved an old conjecture of Gauss, states
that the largest negative discriminant of class number 1 is D = −163. Thus,

j

(
1 +
√
−163

2

)
∈ Z.

Since 163 is big, for τ = z163,

|q| = e−π
√

163 ≈ 3.8 · 10−18.
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This is very tiny! Conversely, q−1 is huge. So

Z 3 j(τ) = q−1 + 744 + 196884q +O(q2) ≈ q−1 + 744.

Thus,

q−1 = −eπ
√

163 ≈ j(τ)− 744 ∈ Z.
Finally, we conclude with a very famous application of CM theory. The Kronecker-

Weber theorem famously answers the question of what number fields are abelian (mean-
ing they have abelian Galois group over Q). Specifically, they are just the subfields of
cyclotomic fields Q(ζm). Kronecker’s Jugendtraum (dream of youth), also listed as
Hilbert’s 12-th problem, asks if one can do something similar with base field a number
field. That is, abelian extensions of Q are all contained in the fields you get by adjoining
roots of unity to Q. These are values of a single transcendental function: the exponen-
tial function. The theory of CM we’ve seen above can be used to show that there is a
transcendental function j(τ), such that when you plug in values, the singular moduli,
and adjoin them to imaginary quadratic fields, you find all the abelian extensions of
the imaginary quadratic field you started with. These constructions are done using the
class polynomials HD(X) we constructed above. Shimura extended these results to CM
number fields; however, the general problem of Hilbert remains open today.
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